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Abstract

Aim: The biodiversity crisis has highlighted the need to assess and map biodiversity
in order to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have
been proposed as biological indicators for habitat quality in Neotropical forests,
which contain the world's richest biological communities. Here, we provide maps of
different facets of Ithomiini diversity across the Neotropics to identify areas of evo-
lutionary and ecological importance for conservation and evaluate their overlap with
current anthropogenic threats.

Location: Neotropics.

Methods: We ran species distribution models on a data set based on 28,986 georef-
erenced occurrences representing 388 ithomiine species to generate maps of geo-
graphic rarity, taxonomic, phylogenetic and Miillerian mimetic wing pattern diversity.
We quantified and mapped the overlap of diversity hotspots with areas threatened by
or providing refuge from current anthropogenic pressures.

Results: The eastern slopes of the Andes formed the primary hotspot of taxonomic,
phylogenetic and mimetic diversity, with secondary hotspots in Central America

and the Atlantic Forest. Most diversity indices were strongly spatially correlated.
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Nevertheless, species-poor communities on the Pacific slopes of the Andes also shel-
tered some of the geographically rarest species. Overall, tropical montane forests
that host high species and mimetic diversity as well as rare species and mimicry rings
appeared particularly under threat.

Main conclusions: Remote parts of the Upper Amazon may act as refuges against cur-
rent anthropogenic pressures for a limited portion of Ilthomiini diversity. Furthermore,
it is likely that the current threat status may worsen with ongoing climate change
and deforestation. In this context, the tropical Andes occupy a crucial position as the
primary hotspot for multiple facets of biodiversity for ithomiine butterflies, as they
do for angiosperms, tetrapods and other insect taxa. Our results support the role of
ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly
diversity and reinforce the position of the tropical Andes as a flagship region for bio-

diversity conservation in general, and insect and butterfly conservation in particular.

KEYWORDS

1 | INTRODUCTION

The global biodiversity crisis is a critical environmental issue (IPBES,
2019) with unprecedented rates of species loss across multiple
taxonomic groups, now referred to as the sixth mass extinction
(Barnosky et al., 2011; Ceballos et al., 2015). Such species loss sig-
nificantly alters biodiversity patterns and affects ecosystem func-
tions worldwide. In particular, there is growing evidence for recent
massive declines in insects (Cardoso et al., 2020; Eggleton, 2020;
Montgomery et al., 2020), which represent the bulk of current biodi-
versity (Mora et al., 2011; Stork, 2018). This loss is concomitant with
the global increase in human pressures on ecosystems, with cur-
rently 75% of the planet's non-frozen land surface impacted (Venter
et al., 2016b). These alarming trends are compelling scientists to bet-
ter assess and map biodiversity in order to prioritize conservation
efforts given limited time and resources (Brooks et al., 2006).

One early approach towards identifying global priority areas for
conservation was the delimitation of biodiversity hotspots (Myers
et al., 2000): areas with high levels of vascular plant species rich-
ness and endemism, and significant loss of primary natural habitats.
The Neotropics encompass seven of these biodiversity hotspots, in-
cluding the richest of them: the Tropical Andes (Myers et al., 2000).
However, it is not known how well such hotspots, identified on the
basis of vascular plant diversity and confirmed for vertebrates, pro-
vide adequate surrogates for the diversity of other taxa, especially
insects (Stork & Habel, 2014). Indeed, georeferenced primary bio-
diversity data for insects, particularly in the Neotropics, are very
scarce due to the challenges of collecting, digitalizing and verifying
taxonomic identifications for records covering often inaccessible,
remote regions (Short et al., 2018; Stork, 2018). Moreover, whether
species richness and endemism adequately reflect other facets of
biodiversity such as phylogenetic and functional diversity may

anthropogenic pressures, biodiversity hotspots, geographic rarity, Human Footprint, human
impacts, Ithomiini butterflies, Millerian mimicry, phylogenetic diversity, species richness

depend on the group considered (Albouy et al., 2017; Allouche et al.,
2006; Devictor et al., 2010; Mazel et al., 2014; Prendergast et al.,
1993; Williams et al., 1996; Zupan et al., 2014). There is therefore an
urgent need to explore to what extent existing hotspots identified
for well-studied taxa coincide with those of other less well-known
groups, and how well those hotspots represent facets of biodiversity
beyond species richness and endemism. Here, we tackle this issue by
investigating the spatial distribution of different metrics of biodiver-
sity in an integrative assessment that covers its multifaceted nature
(Pollock et al., 2017, 2020). We focus our assessment on a diverse
insect group, the butterfly tribe Ithomiini Godman & Salvin, 1879
(Nymphalidae: Danainae), in the world's biologically richest region,
the Neotropics.

The tribe Ithomiini comprises 396 described species distributed
among 42 genera and 10 subtribes (Chazot et al., 2019). These but-
terflies form diverse communities in humid forests from sea level to
3000 m, throughout the Neotropics. Their habitats are threatened by
high rates of deforestation associated with cattle ranches, soybean
and oil palm plantations, as well as industrial logging, mining and road
building (Armenteras et al., 2017; Fearnside, 2017; Rajao et al., 2020;
Sonter et al., 2017). In this context, ithomiine butterflies have been
proposed as indicator species for habitat quality and local butterfly
diversity (Beccaloni & Gaston, 1995; Brown Jr, 1997; Uehara-Prado
& Freitas, 2009 but see Brown & Freitas, 2000). Ithomiini also repre-
sent the most diverse radiation of aposematic and Miillerian mimetic
butterflies, whereby co-occurring unpalatable species display similar
wing colour patterns that advertise their distastefulness to preda-
tors. Miillerian co-mimetic species interact mutualistically, because
they share the cost incurred during the learning process of predators
(Joron & Mallet, 1998; Miiller, 1879; Sherratt, 2008). All Ithomiini
species engage in Mllerian mimicry and drive mimicry in other dis-

tantly related groups of Lepidoptera (Beccaloni, 1997; Brown Jr. &
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Benson, 1974). Remarkably, many ithomiines have partly transparent
wings (McClure et al., 2019; Papageorgis, 1975; Figure 1a), which
has inspired their common name of ‘clearwing’ butterflies. Overall,
ithomiine butterflies combine their potential role as biological indi-
cators with positive public image (e.g. Barua et al., 2012; Sumner
et al., 2018), making them candidate flagship species for conserva-
tion in the Neotropics. Previous studies have already investigated
the historical biogeography of the tribe. Ithomiini likely originated
in the eastern Andean foothills and a major clade, composed of the
five most species-rich subtribes and comprising 80% of species, di-
versified in Central Andes 20-10 My ago (Chazot et al., 2019). Those
areas, which harbour heterogeneous landscapes favouring specia-
tion, also coincide with known hotspots of species richness for three
diverse ithomiine genera (Ithomia, Napeogenes, and Oleria; Chazot,
Willmott, Freitas, et al., 2016). However, patterns of species diver-
sity remain to be documented at the level of the entire tribe, across
the Neotropics. Similarly, patterns of phylogenetic diversity, geo-
graphic rarity and mimicry richness remain largely uncharacterized
at such scales.

Phylogenetic diversity has become a fundamental component
of biodiversity assessments that addresses the evolutionary dis-
tinctiveness of species assemblages (Faith, 1992). It is recognized
by the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES) as a key indicator for the mainte-

nance of options in nature's contribution for people (IPBES, 2019)

Al
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and is included in conservation tools such as the EDGE index for
Evolutionarily Distinct and Globally Endangered species (Isaac et al.,
2007). High phylogenetic diversity reflects the presence of species
with distinctive evolutionary pathways, which provide a proxy for
evolutionary novelties of high value for conservation (Faith, 2018).

Geographic rarity is another component of biodiversity that re-
lates to the spatial dimension of rarity, with species with restricted
distributions being considered rare compared to species with wider
ranges (Rabinowitz, 1981). Species with small geographic ranges can
support original functions in ecosystems (Mouillot et al., 2013), while
they often face higher risks of extinction (B6hm et al., 2016; Cardillo
et al., 2008; Purvis et al., 2000). Species range size is therefore com-
monly incorporated into diversity indices (Gumbs et al., 2020; Jetz
et al., 2014; Maritz et al., 2016). Mapping species geographic rarity
provides an additional tool for conservation prioritization (Cadotte &
Davies, 2010), as another complementary facet of diversity patterns
linked to species vulnerability and areas of endemism.

Biotic interactions, although rarely integrated in biodiversity
assessments, represent the architecture of life that reflects the in-
terdependence of all units of biodiversity (Bascompte, 2009). For ex-
ample, mutualistic interactions can shape species distributions and
community composition (Duffy & Johnson, 2017; Sherratt, 2006),
affecting ecosystem stability (Hale et al., 2020; Pascual-Garcia &
Bastolla, 2017) and supporting ecosystem services such as pollina-

tion function or seed dispersal (Millennium Ecosystem Assessment,

FIGURE 1 W.ing patterns in ithomiine butterflies. (a) Specimen of Hypomenitis libethris harbouring the wing pattern LIBETHRIS with
transparent areas. Photo credits: Andrew Neild, 2016. (b) Illustration of the convergence of wing patterns across Ithomiini. Mimicry ring
CONFUSA: Methona confusa psamathe (1), Thyridia psidii ino (Il), Methona themisto (l11). Mimicry ring ILLINISSA: Oleria ilerdina priscilla (IV),
Napeogenes sylphis ercilla (V), Hyposcada illinissa illinissa (V1). Mimicry ring MAELUS: Melinaea satevis cydon (VIl), Hypothyris anastasia
anastasina (VIIl), Hypothyris fluonia pardalina (IX). Mimicry ring AURELIANA: Napeogenes sylphis corena (X), Hypoleria aureliana (XI),

Pseudoscada fluora aureola (XII). Photo credits: Nicolas Chazot, 2015
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2005). Miillerian mimicry systems, such as ithomiine butterflies,
provide an excellent opportunity to study mutualistic interactions,
because interacting species can be identified through their similarity
in warning patterns. Millerian mimicry is known to affect individual
fitness and constrain species distribution (Aubier et al., 2017; Chazot
et al., 2014; Kapan, 2001; Langham, 2004; Mallet & Barton, 1989;
Sherratt, 2006). Additionally, mimetic species form adaptively as-
sembled mutualistic communities that are predicted to suffer more
from community disassembly due to the loss of those mutualistic
interactions (Toby Kiers et al., 2010) and to be more sensitive to
co-extinction cascades (Dunn et al., 2009). Therefore, Mdillerian
mimicry systems provide opportunities to map patterns of mimicry
richness and geographic rarity, which reflect the distribution of mu-
tualistic interactions in space, a component of functional diversity
that is particularly relevant for conservation.

In this study, (1) we provide modelled distribution maps of tax-
onomic, phylogenetic and mimetic diversity as well as geographic
rarity, for the entire tribe Ithomiini across the Neotropics, in order
to identify biodiversity hotspots as areas of both evolutionary and
ecological importance for conservation; (2) we evaluate the spa-
tial relationships among those facets of Ithomiini diversity; and (3)
we assess current anthropogenic threats to Ithomiini biodiversity
hotspots, highlighting risk areas with high anthropogenic pressures,
and potential refuges with currently low levels of human influence.

2 | METHODS

2.1 | Datasources

We compiled from multiple sources an initial data set of 28,986 geo-
referenced occurrences for 388 ithomiine butterfly species in their
natural habitats, out of the 396 known species, spanning 25 coun-
tries across the Neotropics (see maps of occurrences, sampling ef-
fort, sampling completeness and bioregions in Figure S1.1, S1.2,
$1.3 & S1.4). This data set provided 19,271 species-grid-cell records
for distribution modelling at a 0.25° x 0.25° spatial resolution after
removing duplicate records from single grid cells, which are avail-
able from Zenodo at https://doi.org/10.5281/zenodo0.4696055. The
data come from fieldwork by the authors over the past five decades,
and records from over 60 museums and private collections detailed
in the online archive metadata. Each record is associated with its
location, its taxonomic identity and its mimicry ring membership
(i.e. a wing colour pattern shared by individuals reflecting mutual-
istic interactions). The current classification of wing patterns pre-
sents 44 mimicry rings (Figure S2.5) updated from previous works
(Beccaloni, 1997; Chazot et al., 2014, 2019; Elias et al., 2008; Jiggins
et al., 2006; Willmott & Mallet, 2004).

Sets of co-mimetic species (i.e. sharing a wing pattern) form
mimicry rings (Figure 1b). Most Ithomiini species comprise several
to many subspecies that may belong to distinct Mllerian mimicry
rings. Additionally, some subspecies show a sexual dimorphism with
males and females belonging to different mimicry rings. Since we

intended to map mimicry ring distribution as well as species distri-
bution, we defined Operational Mimicry Units (OMUs) as the set of
individuals within the same species that shared the same mimicry
pattern. An OMU may either be equivalent to an entire species, if all
individuals of all subspecies of that species share the same pattern,
or it may represent individuals from a smaller group of subspecies
that share a common mimicry pattern, in which case a single spe-
cies may be represented by multiple OMUs. A total of 783 OMUs
were used as modelling units for distribution models (complete list
in Appendix 4). The mimicry classification of all 1511 subspecies is
available from Zenodo at https://doi.org/10.5281/zenodo0.5497876.

To compute indices of phylogenetic diversity, we used a recently
published time-calibrated phylogeny of the Ithomiini (Chazot et al.,
2019; Figure S3.6), which represents 339 out of the 388 species with

georeferenced records.

2.2 | Dataanalyses

2.21 | Species distribution modelling (SDM)

In order to map the current distributions of ithomiines, we devel-
oped species distribution models (SDMs) relating occurrence data
with a set of environmental variables. We describe our SDM meth-
ods following the ODMAP (Overview, Data, Model, Assessment,
Prediction) protocol for species distribution models (Zurell et al.,
2020). Here, we provide the overview of the distribution models
while the remaining ODMAP sections, providing details in modelling
steps, justifications for modelling choices and a more in-depth dis-
cussion about potential caveats and limits, are detailed in Appendix
5.

We aimed to model the current distribution of species and mim-
icry rings, as well as to infer the current patterns of geographic
rarity and taxonomic, phylogenetic and mimicry ring diversity (as de-
scribed further below) for the whole Ithomiini tribe. We proceeded
as follows: (1) we retrieved environmental predictors of Ithomiini
distribution, (2) we obtained multiple environmental suitability maps
for each OMU employing a set of SDM algorithms, (3) we derived for
each OMU a median ensemble model depicting its modelled distri-
bution, (4) we stacked these modelled distribution maps in order to
obtain in each pixel the predicted occurrence of OMUs, while ob-
served binary maps of OMU with less than six occurrences were in-
cluded directly at this step, then we (5) derived species and mimicry
ring distribution maps and compute various taxonomic, phylogenetic
and mimicry diversity and geographic rarity indices (Figure 2).

Our models encompassed the entire distribution of the tribe
in the Neotropics (Longitude 120°E-30°E, Latitude 37°S-28°N)
at a 0.25° x 0.25° spatial resolution. Thus, each quarter-degree
grid cell (hereafter, pixel) represents a virtual community of ca.
27.8 km x 27.8 km. This resolution is appropriate for niche models
based on large-scale predictors such as climate (McGill, 2010), limits
commission errors (Di Marco et al., 2017) and appears sufficient to
identify broad geographic patterns of diversity at a scale relevant
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FIGURE 2 Species Distribution Model (SDM) workflow depicting the different analytical steps performed. Distribution models are
computed for each OMU. Depending on sample size, modelling steps and settings differed. Clipping step to constrain SDM projections to
plausible distribution ranges is not shown on the chart. Algo = algorithms used in the study, namely random forest (RF), gradient boosting
models (GBM) and artificial neural networks (ANN); PAs = sets of pseudo-absences; CV = cross-validation folds; mim. rings = mimicry rings

to biodiversity conservation (e.g. Abreu-Jardim et al., 2021; Gumbs
et al., 2020; Robuchon et al., 2021; Roll et al., 2017). We selected
climate, represented by annual temperature and humidity levels and
seasonality (MERRAclim v.2.0; Vega et al., 2017), elevation (SRTM
Dataset v.4.1; Farr et al., 2007) and vegetation cover (GLCF; Sexton
et al., 2013), as environmental predictor variables for distribution
modelling. Indeed, these environmental dimensions have been re-
garded as important in determining large-scale distribution patterns
and structuring ithomiine communities (Beccaloni, 1997; Chazot
etal., 2014).

We fitted SDMs for 563 OMUs for which we had at least six
occurrences available (71.9% of OMUs, encompassing 335 species,
i.e. 86.3% of species with known occurrences). We included the re-
maining 220 OMUs (28.1%) in stacks as binary rasters of presences-
absences. We fitted SDMs in biomod2 v.3.4.6 (Thuiller et al., 2020)
using three machine learning algorithms to cope with small sample
sizes: random forest, generalized boosted models and artificial neu-
ral networks. We drew pseudo-absences from those occurrences in
a target group strategy (Mateo et al., 2010), a procedure to increase
the likelihood that sampled pseudo-absences were effectively lo-
cated in sites where OMUs were absent. We evaluated model per-
formance with maximized Jaccard indices. For 361 OMUs with small
sample sizes (N < 30; 46.1%), models were evaluated upon the cal-
ibration data set. For 202 OMUs with large sample sizes (N = 30;
25.8%), we ran an additional 3-fold spatial block cross-validation
step (Roberts et al., 2017; Valavi et al., 2019) to improve model
evaluation. We discarded models with a poor performance (Jaccard
index < 0.95 without cross-validation; Jaccard index < 0.6 with
cross-validation) and produced an ensemble model based on the
median of predictions. We clipped final outputs with OMU-specific
buffered alpha-hulls and, where relevant, we constrained outputs to
the east or west of the Andean continental divide, to limit the extent
of possible distributions to reasonable areas.

We derived species and mimicry ring distribution maps from the
modelled distribution maps of OMUs as the likelihood of finding at
least one of the OMUs belonging to the species/mimicry ring in the
community (i.e. in the pixel). In the final post-processing step, we
computed six diversity and geographic rarity indices based directly
on the stack of species and mimicry ring maps. Additionally, we pres-
ent in Appendix 9 four additional indices evaluating similar facets of
diversity with alternative methods to explore the robustness of our
analyses to index selection.

2.2.2 | Diversity and geographic rarity indices
We computed species and mimicry richness as the expected number
of species and mimicry rings found in our communities (i.e. in each
pixel), by summing the continuous outputs from models as recom-
mended by Calabrese et al. (2014). To estimate phylogenetic diver-
sity, we computed Faith's phylogenetic diversity index (Faith, 1992)
based on the phylogeny of the Ithomiini tribe (Chazot et al., 2019)
encompassing 339 species and 719 OMUs. This index estimates the
total length of branches connecting all the species within a commu-
nity, capturing the quantity of evolutionary history they represent.
We assigned geographic rarity weights for each species and
mimicry ring based on their relative geographic ranges following the
threshold-dependent exponentially decaying weighting scheme of
Leroy et al. (2013). This method assigns weights that exponentially
increase below the chosen rarity threshold and rapidly decay to zero
above the threshold, thereby limiting the impact of common spe-
cies on community indices. We chose the rarity threshold at which
the average proportion of rare species in communities was 25%, as
detailed in Leroy et al. (2012). Next, we used these rarity weights
to calculate an index of rarity for each community, which was the
average rarity weight for all species or mimicry rings. These indices
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can be seen as proxies for relative levels of endemism since they
quantify the relative importance of species or mimicry ring with
small ranges in communities.

To quantify the importance of mutualistic interactions, we es-
timated the mean size (i.e. number of species) for mimicry rings
within each community. Communities with high mean mimicry ring
size correspond to greater frequencies of mutualistic interactions,
while communities with low mean mimicry ring size host in average
species engaged in fewer mutualistic interactions. Assuming that
the richest mimicry rings also tend to be the most abundant, spe-
cies belonging to smaller mimicry rings, thus harbouring locally rare
patterns, are likely more vulnerable to predation by naive predators,
and thereby to local extinctions (Miiller, 1879). As such, a low mean
mimicry ring size may relate to higher vulnerability on average in the
mimicry community.

Additionally, we computed indices of effective richness based on
Shannon's diversity indices and an index of evolutionary distinctive-
ness based on Fair-Proportions (Redding, 2003), and we mapped the
size of the main mimicry ring in each community (see Figure $9.22).
A flow chart and additional details on index computation based on
our modelled distribution maps are provided in Appendix 8. The ro-
bustness of indices was tested with several sensitivity analyses as
described in the ODMAP protocol. Results showed no qualitative
difference with the results presented in the main text (see Figure
$5.12-55.16).

2.2.3 | Estimation of index correlation

We computed pairwise Spearman's rho coefficients (p) to estimate
the spatial congruence among our indices. We tested for the sig-
nificance of these relationships with corrected degrees of free-
dom accounting for the positive spatial autocorrelation among
observations (Clifford et al., 1989; Haining, 1991). Then, we built a
heatmap of spatial congruence among indices based on the abso-
lute Spearman's rho coefficients. Additionally, we ran a hierarchi-
cal clustering analysis based on those same absolute coefficients
as distances from perfect correlation (i.e. d = 1 - |p|) with a com-
plete linkage method to produce a dendrogram revealing classes
of indices showing highly similar patterns. We distinguished four
classes of indices that represented the main facets of biodiversity
while grouping indices that were highly correlated and revealed
virtually similar hotspots. This resulted in applying a threshold of
|p| equal to 0.94 (see details in Results). Then, we selected one
index per class for subsequent analyses of anthropogenic threats

on diversity hotspots.
2.2.4 | Spatial overlap between biodiversity
hotspots and anthropogenic threats

We used the 2009 Human Footprint index (Venter et al., 2016a) as a
measure of anthropogenic threats to our communities of ithomiine

butterflies. Despite representing anthropogenic pressures from
a decade ago, Human Footprint remains the most comprehensive
and recent map available for worldwide cumulative human pres-
sures on terrestrial ecosystems (see Figure S6.17). It is still widely
used in similar large-scale conservation assessments, which allows
for standardization and comparative analyses (e.g. Allan et al., 2019;
Di Marco et al., 2018; Elsen et al., 2020; Maron et al., 2020; Tucker
et al,, 2018). The index combines eight variables that measure direct
human impacts on the environment, namely (1) human population
density, (2) night-time light pollution, (3) extent of built environ-
ments, (4) crop land cover, (5) pasture land cover, and (6) proximity
to railways, (7) to major roadways and (8) to navigable waterways.
We defined two levels of hotspots as the top 5% and 25% of
communities showing the highest values for each of our indices.
Similarly, we defined areas of very high (top 5%), high (top 25%),
low (bottom 25%) and very low (bottom 5%) threats based on the
Human Footprint scores of communities. Then, we characterized
as risk areas communities showing the highest values in a facet of
Ithomiini diversity (i.e. hotspots), and the highest levels of anthro-
pogenic pressures. Risk areas should be considered as priorities for
reactive conservation with the goal of reducing high anthropogenic
impact on threatened biodiversity (Brooks et al., 2006). Conversely,
we characterized refuge areas as communities within hotspots with
the lowest levels of pressures. Refuges should be prioritized for pro-
active conservation, with the goal of preserving these diverse areas
from future anthropogenic threats (Brooks et al., 2006), providing
shelter for a portion of ithomiine biodiversity. Finally, we mapped
risk areas and refuge areas for four indices selected to represent our
classes of highly correlated indices, namely (1) species richness, (2)
mean species geographic rarity, (3) mimicry richness and (4) mean

mimicry geographic rarity.

2.3 | Reproducibility and data availability

We conducted all analyses using R 3.6.2 (R Core Team, 2019) with
packages ‘raster’ 3.0-12 (Hijmans, 2020), ‘biomod2’ 3.4.6 (Thuiller
et al.,, 2020), ‘sf’ 0.9-0 (Pebesma, 2018), ‘blockCV’ 2.1.1 (Valavi
et al., 2019), ‘alphahull’ 2.2 (Pateiro-Lopez & Rodriguez-Casal, 2019),
‘ape’ 5.3 (Paradis & Schliep, 2019), ‘geiger’ 2.0.6.1 (Harmon et al.,
2008), ‘Rarity’ 1.6.3 (Leroy, 2016) and others. All R scripts are avail-
able on GitHub at https://github.com/MaelDore/ithomiini_diver
sity. Species-grid-cell records and the mimicry classification used for
modelling are available from Zenodo at https://doi.org/10.5281/ze-
nodo.4696055 and https://doi.org/10.5281/zenodo.5497876.

3 | RESULTS

We inferred the distribution for each of the 388 species and 44 mim-
icry rings based on the 783 OMUs. All OMU/species/mimicry ring
modelled distribution maps can be found at https://doi.org/10.5281/
zenodo.4673446. Examples are provided in Appendix 7.
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https://doi.org/10.5281/zenodo.4696055
https://doi.org/10.5281/zenodo.5497876
https://doi.org/10.5281/zenodo.4673446
https://doi.org/10.5281/zenodo.4673446
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The Eastern slopes of the Andes appeared as the primary hotspot
of Ithomiini taxonomic, phylogenetic and mimetic diversity, espe-
cially between 500 and 2500 m (Figure 3a, c, d, g). We estimated
that some quarter-degree grid cells (hereafter referred to as com-

munities) may harbour as many as 120 species, representing up to
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28 mimicry rings, especially in Ecuador and Peru. These species

totals partly represent alpha-diversity and partly different habi-

Species geographic rarity

tats contained within single quarter-degree grid cells. The Atlantic
Forest and the highlands of Central America appeared as second-
ary hotspots but fall far behind in terms of numbers of species,
mimicry richness and phylogenetic diversity. Conversely, we es-

timated species and mimicry richness, and phylogenetic diversity,
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